A Practical Congestion Attack on Tor Using Long Paths

نویسندگان

  • Nathan S. Evans
  • Roger Dingledine
  • Christian Grothoff
چکیده

In 2005, Murdoch and Danezis demonstrated the first practical congestion attack against a deployed anonymity network. They could identify which relays were on a target Tor user’s path by building paths one at a time through every Tor relay and introducing congestion. However, the original attack was performed on only 13 Tor relays on the nascent and lightly loaded Tor network. We show that the attack from their paper is no longer practical on today’s 1500-relay heavily loaded Tor network. The attack doesn’t scale because a) the attacker needs a tremendous amount of bandwidth to measure enough relays during the attack window, and b) there are too many false positives now that many other users are adding congestion at the same time as the attacks. We then strengthen the original congestion attack by combining it with a novel bandwidth amplification attack based on a flaw in the Tor design that lets us build long circuits that loop back on themselves. We show that this new combination attack is practical and effective by demonstrating a working attack on today’s deployed Tor network. By coming up with a model to better understand Tor’s routing behavior under congestion, we further provide a statistical analysis characterizing how effective our attack is in each case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spying in the Dark: TCP and Tor Traffic Analysis

We show how to exploit side-channels to identify clients without eavesdropping on the communication to the server, and without relying on known, distinguishable traffic patterns. We present different attacks, utilizing different side-channels, for two scenarios: a fully offpath attack detecting TCP connections, and an attack detecting Tor connections by eavesdropping only on the clients. Our at...

متن کامل

The Evaluation of Circuit Selection Methods on Tor

Tor provides anonymity online by routing traffic through encrypted tunnels, called circuits, over paths of anonymizing relays. To enable users to connect to their selected destination servers without waiting for the circuit to be build, the Tor client maintains a few circuits at all times. Nevertheless, Tor is slower to use than directly connecting to the destination server. In this paper, we p...

متن کامل

Tor: The Second-Generation Onion Router

We present Tor, a circuit-based low-latency anonymous communication service. This second-generation Onion Routing system addresses limitations in the original design. Tor adds perfect forward secrecy, congestion control, directory servers, integrity checking, configurable exit policies, and a practical design for rendezvous points. Tor works on the real-world Internet, requires no special privi...

متن کامل

SWIRL: A Scalable Watermark to Detect Correlated Network Flows

Flow watermarks are active traffic analysis techniques that help establish a causal connection between two network flows by content-independent manipulations, e.g., altering packet timings. Watermarks provide a much more scalable approach for flow correlation than passive traffic analysis. Previous designs of scalable watermarks, however, were subject to multi-flow attacks. They also introduced...

متن کامل

Securing Tor Tunnels under the Selective-DoS Attack

Low-latency anonymous networks like Tor are subject to selective denial-of-service (DoS) attacks. Selective-DoS attacks lowers anonymity as it forces paths to be rebuilt multiple times to ensure delivery which increases the opportunity for more attack. In this paper we present a detection algorithm which filters out compromised tunnels from a set of Tor tunnels to ensure better anonymity. Our d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009